
Simon Brown
@simonbrown

The code doesn’t tell
the whole story

@simonbrown

@simonbrown

@simonbrown

@simonbrown

@simonbrown

@simonbrown

@simonbrown

@simonbrown

@simonbrown

Enough detail to
start exploring

@simonbrown

@simonbrown

@simonbrown

Very detailed and precise
(terrain, buildings, etc)

@simonbrown

Different maps for
different audiences and

different purposes

@simonbrown

We’ve spent the past 20 years figuring
out how to visualise our process

@simonbrown

But we’ve forgotten how to visualise
the actual software we’re building 🤦

#2 “Not everybody else on the team knows it.”
#3 “I’m the only person on the team who knows it.”

#36 “You’ll be seen as old.”
#37 “You’ll be seen as old-fashioned.”

#66 “The tooling sucks.”
#80 “It’s too detailed.”

#81 “It’s a very elaborate waste of time.”
#92 “It’s not expected in agile.”

#97 “The value is in the conversation.”

@simonbrown

“just use a whiteboard”

@simonbrown

If you’re going to use “boxes & lines”,
at least do so in a structured way,
using a self-describing notation

@simonbrown

There are many different audiences for diagrams
and documentation, all with different interests

(software architects, software developers, operations and support staff, testers,
Product Owners, project managers, Scrum Masters, users, management,

business sponsors, potential customers, potential investors, …)

@simonbrown

C4
c4model.com

Zoom in

Zoom in

Level 1

Context
Level 2

Containers
Level 3

Components
Level 4

Code

Zoom in

The C4 model for visualising
software architecture

c4model.com

@simonbrown

Diagrams are maps
that help software developers navigate a large and/or complicated codebase

@simonbrown

The C4 model is
notation independent

@simonbrown

The C4 model is
notation independent

@simonbrown

System Context diagram
What is the scope of the software system we’re building?

Who is using it? What are they doing?
What system integrations does it need to support?

@simonbrown

@simonbrown

Container diagram
What are the major technology building blocks?

What are their responsibilities?
How do they communicate?

@simonbrown

@simonbrown

@simonbrown

Diagrams are maps
to navigate the code

@simonbrown

Points of
interest

@simonbrown

Elizabeth
Castle

@simonbrown

Granite and concrete?!

@simonbrown

History

@simonbrown

Travel Guidebook
(maps, points of interest, sights, itineraries,
history, culture, practical information, etc)

@simonbrown

The code doesn’t tell
the whole story

@simonbrown

Useful information
spread across

hundreds of pages;
rarely read or updated

Software
Architecture
Document

@simonbrown

Software Guidebook
(maps, points of interest, sights, itineraries,
history, culture, practical information, etc)

@simonbrown

The scope is a single
software system

@simonbrown

Describe what you
can’t get from the code

@simonbrown

This is a starting point; add and
remove sections as necessary.

Software
Architecture

A description of the software
architecture, including static

structure (e.g. containers and
components) and dynamic/

runtime behaviour.

Code
A description of important or

complicated component
implementation details,

patterns, frameworks, etc.

Data
Data models, entity

relationship diagrams,
security, data volumes,

archiving strategies, backup
strategies, etc.

Infrastructure
Architecture
A description of the

infrastructure available
to run the software system.

Deployment
The mapping of software (e.g.
containers) to infrastructure.

Context
A system context diagram,
plus some narrative text to

“set the scene”.

Functional
Overview

An overview of the software
system; perhaps including
wireframes, UI mockups,

screenshots, workflow
diagrams, business process

diagrams, etc.

Quality Attributes
A list of the quality attributes

(non-functional requirements;
e.g. performance, scalability,

security, etc).

Constraints
A list of the environmental
constraints (e.g. timescales,

budget, technology,
team size/skills, etc).

Principles
A list of the development and

architecture principles (e.g.
coding conventions,

separation of concerns,
patterns, etc).

Development
Environment

A description of how a new
developer gets started.

Operation and
Support

An overview of how the
software system is operated,
supported, monitored, etc.

Decision Log
A log of the major decisions

made; e.g. as free format text
or a collection of “Architecture

Decision Records”.

https://leanpub.com/documenting-software-architecture/c/free

@simonbrown

@simonbrown

Documentation format?
Microsoft Word, Microsoft SharePoint,

Atlassian Confluence, Markdown or AsciiDoc, etc

@simonbrown

How long?
Something I can read in 1-2 hours;

a good starting point for exploring the code

@simonbrown

How do you keep software
architecture documentation

up to date?

@simonbrown

Documentation should
be constantly evolving

@simonbrown

Decision Log
A log of the major decisions made; e.g. as free format text

or a collection of “Architecture Decision Records”

@simonbrown

“Architecture
Decision Record”

A short description of an
architecturally significant decision

http://thinkrelevance.com/blog/2011/11/15/documenting-
architecture-decisions (Michael Nygard)

@simonbrown

We’re not trying to make
and record every decision

“ ”@simonbrown

Architecture represents the
significant decisions, where significance

is measured by cost of change.

Grady Booch

“ ”I think there is a role for a broad starting point architecture. Such things
as stating early on how to layer the application, how you'll interact with the
database (if you need one), what approach to use to handle the web server.

Martin Fowler
https://martinfowler.com/articles/designDead.html

@simonbrown

Immutable vs mutable ADRs?

@simonbrown

Software architecture diagrams
should show the result
of significant decisions

In summary…

@simonbrown

Over the past 20 years,
many teams have thrown
away big design up front

@simonbrown

Unfortunately, architectural
thinking, documentation,

diagramming and modelling
were also often discarded

“ ”@simonbrown

Working software
over

comprehensive
documentation

Manifesto for Agile Software Development

@simonbrown

We have a duty to deliver
some documentation

alongside the code

@simonbrown

Tribal and siloed
knowledge

@simonbrown

The “bus factor”

Architecture decision records
A changelog of major decisions

Documentation
Describes what you can’t get from the code

Diagrams
Maps to help you navigate a codebase

Simon Brown
@simonbrown

Thank you!

