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The code doesn’t tell 
the whole story
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Enough detail to 
start exploring
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Very detailed and precise 
(terrain, buildings, etc)
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Different maps for 
different audiences and 

different purposes
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We’ve spent the past 20 years figuring 
out how to visualise our process
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But we’ve forgotten how to visualise 
the actual software we’re building 🤦



#2 “Not everybody else on the team knows it.” 
#3 “I’m the only person on the team who knows it.” 

#36 “You’ll be seen as old.” 
#37 “You’ll be seen as old-fashioned.” 

#66 “The tooling sucks.” 
#80 “It’s too detailed.” 

#81 “It’s a very elaborate waste of time.” 
#92 “It’s not expected in agile.” 

#97 “The value is in the conversation.”
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“just use a whiteboard”
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If you’re going to use “boxes & lines”, 
at least do so in a structured way, 
using a self-describing notation
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There are many different audiences for diagrams 
and documentation, all with different interests 

(software architects, software developers, operations and support staff, testers, 
Product Owners, project managers, Scrum Masters, users, management, 

business sponsors, potential customers, potential investors, …)
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C4 
c4model.com



Zoom in

Zoom in

Level 1 

Context
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Code

Zoom in

The C4 model for visualising 
software architecture 

c4model.com
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Diagrams are maps 
that help software developers navigate a large and/or complicated codebase
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The C4 model is 
notation independent
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The C4 model is 
notation independent
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System Context diagram 
What is the scope of the software system we’re building? 

Who is using it? What are they doing? 
What system integrations does it need to support?
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Container diagram 
What are the major technology building blocks? 

What are their responsibilities? 
How do they communicate?
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Diagrams are maps 
to navigate the code
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Points of 
interest
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Elizabeth 
Castle
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Granite and concrete?!
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History
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Travel Guidebook 
(maps, points of interest, sights, itineraries, 
history, culture, practical information, etc)
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The code doesn’t tell 
the whole story
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Useful information 
spread across 

hundreds of pages; 
rarely read or updated

Software 
Architecture 
Document
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Software Guidebook 
(maps, points of interest, sights, itineraries, 
history, culture, practical information, etc)
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The scope is a single 
software system
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Describe what you 
can’t get from the code
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This is a starting point; add and 
remove sections as necessary.

Software 
Architecture 

A description of the software 
architecture, including static 

structure (e.g. containers and 
components) and dynamic/

runtime behaviour.

Code 
A description of important or 

complicated component 
implementation details, 

patterns, frameworks, etc.

Data 
Data models, entity 

relationship diagrams, 
security, data volumes, 

archiving strategies, backup 
strategies, etc.

Infrastructure 
Architecture 
A description of the 

infrastructure available 
to run the software system.

Deployment 
The mapping of software (e.g. 
containers) to infrastructure.

Context 
A system context diagram, 
plus some narrative text to 

“set the scene”.

Functional 
Overview 

An overview of the software 
system; perhaps including 
wireframes, UI mockups, 

screenshots, workflow 
diagrams, business process 

diagrams, etc.

Quality Attributes 
A list of the quality attributes 

(non-functional requirements; 
e.g. performance, scalability, 

security, etc).

Constraints 
A list of the environmental 
constraints (e.g. timescales, 

budget, technology, 
team size/skills, etc).

Principles 
A list of the development and 

architecture principles (e.g. 
coding conventions, 

separation of concerns, 
patterns, etc).

Development 
Environment 

A description of how a new 
developer gets started.

Operation and 
Support 

An overview of how the 
software system is operated, 
supported, monitored, etc.

Decision Log 
A log of the major decisions 

made; e.g. as free format text 
or a collection of “Architecture 

Decision Records”.



https://leanpub.com/documenting-software-architecture/c/free
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Documentation format? 
Microsoft Word, Microsoft SharePoint, 

Atlassian Confluence, Markdown or AsciiDoc, etc
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How long? 
Something I can read in 1-2 hours; 

a good starting point for exploring the code
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How do you keep software 
architecture documentation 

up to date?
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Documentation should 
be constantly evolving
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Decision Log 
A log of the major decisions made; e.g. as free format text 

or a collection of “Architecture Decision Records”
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“Architecture 
Decision Record” 

A short description of an 
architecturally significant decision 

http://thinkrelevance.com/blog/2011/11/15/documenting-
architecture-decisions (Michael Nygard)
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We’re not trying to make 
and record every decision



“          ”@simonbrown

Architecture represents the 
significant decisions, where significance 

is measured by cost of change.

Grady Booch



“          ”I think there is a role for a broad starting point architecture. Such things 
as stating early on how to layer the application, how you'll interact with the 
database (if you need one), what approach to use to handle the web server.

Martin Fowler 
https://martinfowler.com/articles/designDead.html
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Immutable vs mutable ADRs?
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Software architecture diagrams 
should show the result 
of significant decisions



In summary…
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Over the past 20 years, 
many teams have thrown 
away big design up front
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Unfortunately, architectural 
thinking, documentation, 

diagramming and modelling 
were also often discarded



“          ”@simonbrown

Working software 
over 

comprehensive 
documentation

Manifesto for Agile Software Development
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We have a duty to deliver 
some documentation 

alongside the code
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Tribal and siloed 
knowledge
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The “bus factor”



Architecture decision records 
A changelog of major decisions

Documentation 
Describes what you can’t get from the code

Diagrams 
Maps to help you navigate a codebase



Simon Brown
@simonbrown

Thank you!


