
Meroton AB - 2022

The Path to Instant Rebuilds

Less Context Switching and
Sub Minute Submit Times

DevLin2022



Meroton AB - 2022

Software Development Loop

Add functionality and 
test code

Write code

Think about how to solve 
the specific problem

Establish what to write

Check that the new 
functionality is working

Build and test

https://xkcd.com/303/

https://xkcd.com/303/


Meroton AB - 2022

● Time before the first compile command is running
● Example: Chromium project

○ 30000 source files
○ 10s startup time with Make
○ Created Ninja
○ 1s startup time acceptable
○ https://ninja-build.org/manual.html#_introduction

Build Startup Time

https://ninja-build.org/manual.html#_introduction


Meroton AB - 2022

● Example: Web skeleton loading
○ Don’t let the user loose focus or go back

● Example: Chrome browser startup time
○ Regression test

● Solution: Choose your build system wisely

Startup Time

https://www.npmjs.com/package/react-loading-skeleton

https://www.npmjs.com/package/react-loading-skeleton


Meroton AB - 2022

Build and Test Time



Meroton AB - 2022

How to Build and Test

● Example C program
○ main.c, lib.c, lib.h

● Build system
○ Describe the dependency graph
○ Examples: Make, Scons, Bazel

● NOTE: Everyone builds the same
cc -c -o lib.o lib.c

ar rcs lib.a lib.o

cc main.o lib.a -o main

cc -c -o main.o main.c



Meroton AB - 2022

Remote Cache

● Action description
○ Command line
○ Environment variables
○ Input files and content

● Store the results on a cache server
○ More than 99% cache hit, built by your colleagues or CI
○ Reduce build time by 90%

● Deterministic actions
○ No random numbers
○ No date or time

cc -c -o lib.o lib.c



Meroton AB - 2022

Underdescribed Graph - Cache Poisoning

● What if the graph is underdescribed?
○ This is a bug.
○ Builds might be correct by luck.
○ Workaround: make clean && make all

● Avoid cache poisoning
○ Sandbox each action
○ … or use remote execution



Meroton AB - 2022

Remote Execution

● Compilations can be done in parallel
○ make -j1000

● Underdescribed actions won’t build
○ Cannot access local host
○ In practice sandboxed environment

● Move the CPUs to the cluster
○ Small developer machines
○ Large cluster
○ Time share the resources
○ Reduce build time by another 90%



Meroton AB - 2022

No Difference Between Build and Test

● Both are spawning actions
● Run the test in parallel with building main



Meroton AB - 2022

Remote Execution API

https://github.com/bazelbuild/remote-apis

● Clients
○ Bazel - Google (Blaze)
○ Pants - Twitter
○ Buck - Facebook
○ Goma - Chromium (with ninja)
○ …

● Servers
○ Buildbarn
○ Buildfarm
○ bazel-remote (cache only)
○ …

https://github.com/bazelbuild/remote-apis


Meroton AB - 2022

Poll - Build System

Do you use

● Remote cache
● Remote execution



Meroton AB - 2022

Continuous Integration



Meroton AB - 2022

Code Integration

● Two phases
○ Presubmit

■ Assigned to a task
○ Post submit

■ Task done



Meroton AB - 2022

Code Integration

● Three phases
○ Presubmit
○ Post submit
○ Broken state

● Keep repo green
○ “All” tests should 

always pass



Meroton AB - 2022

Move Tests Earlier

● Three phases
○ Presubmit
○ Post submit
○ Broken state

● Keep repo green
○ “All” tests should 

always pass

● Automated tests
○ When to run?
○ Machine cost



Meroton AB - 2022

Summary - Problems with Latency

● Long startup times
○ Lost focus

● Developers need to juggle multiple tasks in parallel
○ Annoying to wait hours for fixing minor things

● Lower willingness to fix typos
○ Increased technical debt

● Reusing the same commit for multiple things
○ More difficult to review

● Extends the critical path
○ Slower feature growth in product



Meroton AB - 2022

Poll - Presubmit times

Average time from triggering presubmit checks until merge

● Have at least some tests
● <1h
● <30m
● <10m
● <1m



Meroton AB - 2022

CI Time - Locally

● Disk and network intensive
○ During startup

● CPU intensive
○ When compiling



Meroton AB - 2022

CI Time - Remotely

● CPU intensive tasks minimized



Meroton AB - 2022

CI Time - Remotely

● Disk and network intense
○ Not much CPU needed

● Next step
○ Reuse the workspace
○ Requires fully specified build 

graph



Meroton AB - 2022

Resolving Red Repo State



Meroton AB - 2022

Rebuild Locally

● Reproduce the error locally
● Start debugging
● Fix and test it



Meroton AB - 2022

Rebuild Locally - Mimic the CI Pipeline

● CI Tools
○ Jenkins pipelines
○ GitHub actions
○ Gitlab pipelines

● Transfering artifacts
○ Deliverables between steps store externally

or…

● Shell scripts
● Defined process or helper scripts

○ … to reproduce certain CI steps locally



Meroton AB - 2022

Visualize Individual Test Results over Time



Meroton AB - 2022

● Interval halving to find the bad commit
○ git bisect start HEAD <good-commit> –
○ git bisect run ./run_test.sh
○ git bisect reset

● Start automatically
○ … for nightly tests

● Review suggested revert
○ Fooled by a flaky test?
○ Is there an easy fix instead?

● Manual inspection in case of slow and expensive tests
○ Timeouts
○ Bricking hardware

Interval Halving



Meroton AB - 2022

● Test what will be the merge result
● Move tests early

○ Includes integration tests

Keep Master Green



Meroton AB - 2022

Speculative Gate Queue

● Test the future state after merge
○ Test main+1
○ Test main+1+2
○ Test main+1+2+3
○ Test main+1+2+3+4

https://zuul-ci.org/

https://zuul-ci.org/


Meroton AB - 2022

Speculative Gate Queue

● Test the future state after merge
○ Test main+1
○ Test main+1+2
○ Test main+1+2+3
○ Test main+1+2+3+4 - Failing

● Is #4 bad?

https://zuul-ci.org/

https://zuul-ci.org/


Meroton AB - 2022

Speculative Gate Queue

● Test the future state after merge
○ Test main+1
○ Test main+1+2
○ Test main+1+2+3 - Failing
○ Test main+1+2+4

● Is #3 bad? 

https://zuul-ci.org/

https://zuul-ci.org/


Meroton AB - 2022

Speculative Gate Queue

● Test the future state after merge
○ Test main+1 - Merging
○ Test main+1+2
○ Test main+1+2+3 - Failing
○ Test main+1+2+4

● Is #3 bad? 

https://zuul-ci.org/

https://zuul-ci.org/


Meroton AB - 2022

Speculative Gate Queue

● Test the future state after merge
○ Test main+1 - Merged
○ Test main+1+2 - Merged
○ Test main+1+2+3 - Failing
○ Test main+1+2+4

● #3 is bad

https://zuul-ci.org/

https://zuul-ci.org/


Meroton AB - 2022

Optimal Gate Queue

● Keeping Master Green at Scale - Uber
○ https://dl.acm.org/doi/pdf/10.1145/3302424.3303970

● Optimistic gate queue is not optimal
○ Changes have a probability of failing

■ Test 1+2+3
■ Test 1+3+4
■ Test 1+2+4
■ Then try 1+2+3+4

○ Correlated with
■ Size of change
■ Certain files
■ Author…

https://dl.acm.org/doi/pdf/10.1145/3302424.3303970


Meroton AB - 2022

Poll - Gate Queue

Do you use a gate queue 

● Tests on push
● Tests after review
● Speculative gate testing after review



Meroton AB - 2022

Conclusion

● Quick local incremental build -> Keep mind focused
● Remote cache/execution -> Faster builds, for developers and CI
● Fast CI -> Finish one task at a time
● Fast CI -> Encourage small fixes, less technical debt

● Shell scripts -> Locally reproducible builds, now and in the future
● Shell scripts -> Avoid vendor lock in
● Gate queue -> Keep Master Green



Meroton AB - 2022

References

Tools of interest:

● Bazel - {Fast, Correct} - Choose two
https://bazel.build/

● Buildbarn
https://github.com/buildbarn/bb-deployments/

● Zuul CI
https://zuul-ci.org/

Previous talks on the subject:

● One Minute Presubmits
https://docs.google.com/presentation/d/14dxac2omYI5Feaoiw-u09qB1fQgJU7ASNJag7YMg3TI/

● Selective testing in Bazel
○ BazelCon 2019 - Selective Testing by Benjamin Peterson

https://www.youtube.com/watch?v=9Dk7mtIm7_A
○ https://github.com/Tinder/bazel-diff

https://bazel.build/
https://github.com/buildbarn/bb-deployments/
https://zuul-ci.org/
https://docs.google.com/presentation/d/14dxac2omYI5Feaoiw-u09qB1fQgJU7ASNJag7YMg3TI/
https://www.youtube.com/watch?v=9Dk7mtIm7_A
https://github.com/Tinder/bazel-diff

