
Surviving Legacy Code:
Microtechniques

A summary:

0. I'm not even going to mention Mikado Method, because that's obviously a
great idea and you all need to read that book next.

1. Start with undo, and invest as much as it takes.
2. Reserve capacity, schedule the work, set a timer, start anywhere.
3. Subclass to Test, then Replace Inheritance with Delegation.
4. Extract Pure Functions, and let the chips fall where they may.
5. Play the long game, ignore "ROI", focus on controling cost, let good things

happen.

Start with Undo, and Invest As Much As It Takes
If you have undo, then nothing hurts "too much". Reduce the cost of
failure because you probably can't reduce the probability of failure.
Safety matters more than flow and speed, because mistakes could be
absolutely devastating in a legacy environment. It could cost ridiculous
amounts of money, time, energy, and reputation.
Be careful: undo in the code is easy, but undo in the environment is
difficult. In the worst case, you have to take snapshots of things or wait
minutes for git to store things for you. It could take a lot of disk space. I've
done this with Screenflow recordings, and sometimes it takes 2 minutes,
and that's fine with me.
If you don't have automated version control, then do it by hand. It feels
like waste, but it absolutely isn't. If you knew which mistakes you'd make,
then you'd have already won the lottery, so don't pretend that you can
know nor that you're expected to know.

Reserve Capacity, Schedule the Work, Set a Timer,
Start Anywhere

Rescuing legacy code — and even writing new code that uses legacy code —
amounts to unplanned, seemingly-unbounded work. You can't "call your
shot" on which parts of it will deliver value. Make peace with that
uncertainty and don't try to deny it. Therefore, treat it like "Research &

http://link.jbrains.ca/2dQxTza

Development", meaning reserve some fixed portion of your capacity
(example: 1/2 day per week) to invest in legacy code, then hope for the
best. Review the results every month or so to decide whether you change
the level of investment.
Make a regular appointment with yourself and your team to work on legacy
code, so that you actually remember to do it and you actually make time to
do it. Protect that appointment like you would protect any other valuable
appointment. Yes, put it on your calendar every single week.
When you sit down to do the work, start doing it in small increments. Set a
timer for 30 minutes, then take your hands off the keyboard when it
sounds, then write down everything in your head, then stop.
You can't predict where value will come from, so pick a place to start, then
just start. Start anywhere. Follow the pain in the design, then it will lead
you directly to the worst parts. Bad news: there's no good place to start;
good news: there's no obviously good place to start, so just start!

Subclass to Test, then Replace Inheritance with
Delegation

Cracking open a class and changing it carries risk. In order to optimize for
safety, I assume that I can't change the class yet, and so I create a "testable
subclass" and use that as a staging area for sketching out prospective
changes.

I probably have to make private parts of the class more visible. I
usually just make things public quickly, but not with legacy code: I
increase visibility only as little as I absolutely have to in order to get
into place the tests I want to write.

A tangled class usually leads to run-on tests where it's hard to distinguish
the action from the (probably excessive) setup. This makes it easy to tangle
ideas in the tests in precisely the same way that implementation details
are tangled in the code.

In the tests, I try to move setup code into the constructor of the
testable subclass. (In Java I use instance initializers for this, then
decide when code should flow into the constructor.) This way I clarify
which parts of my test are "arrange" and which are "act". This helps
me see which parts are tangled that should be separated.
Each test initializes its instance a slightly different way. This code
usually flows into new constructors and creation methods (the
Named Constructor pattern). These help me understand and
document which parts of the class we should pull apart from one
another.

If a testable subclass only changes data, then that tells me that I don't
want hierarchy, but rather different ways of creating the class. Maybe this
means a literal Factory and maybe it just means better-named
constructors. Maybe it means that I have "configuration" and "operation"
tangled in the same place and I need to separate them into "configure,
then start". (This is an example of the Lifecycle/Operate tangle, which is
an example of the Container/Item tangle. Have you seen JDBC's
ResultSet?)

Over time, replace inheritance with delegation/composition, for all the
usual reasons. The tricky part is leaving behind a suitable abstraction.

First, don't panic. If you don't know a good abstraction, then extract a
bad one.
Second, remember that abstraction simply means "hide details", so
look for irrelevant details in the tests and take those as a signal that a
class knows too much about its collaborator. Remove details one by
one until you reach a minimum-knowledge interaction, in which a
class knows the bare minimum it needs to interact with its
collaborator. The more details you remove, the more general it gets,
and the more reuse the pieces become!

I don't know what the functional programming version of this technique
is. Perhaps in functional programming languages, you don't have this
problem?

Extract Pure Functions, and let the chips fall where
they may

The Killer Technique is extracting pure functions, because nothing gets
you to The Finish Line sooner and nothing hurts quite as much.
Give yourself plenty of extra time, space, and be prepared to throw your
work away, because with this technique you will bite off some random
amount of stuff, and you won't know how much you've bitten off until you
start chewing.
Bad news: it's "the long way" to reach a great design. Good news: it's "the
sure way" to reach a great design. If you survive the technique, it rewards
you.
When I say pure function, I mean referentially transparent, meaning that
you can fully determine the function's behavior from its input parameters
and that the function stably computes the same output for the same input.
It means that passing parameters by reference and by value always yields
the same results. In OOP terms, the function does not change the state of
any of its inputs (and, as is explicit in Python, the receiver of a method is

an input!).
Extracting blocks of code into pure functions, rather than merely using the
Composed Method pattern, forces us to confront every last detail of every
tangled dependency and every run-on function. We are forced to see that
our 1,274-line function really manipulates 39 separate pieces of data. We
are forced to see which batches of statements have to happen before other
batches of statements, which limits what we're allowed to reorder without
changing the observable behavior. We do not get to hide these issues in
fields on objects where we can pretend that the design isn't so bad. We see
it all.
Extracting pure functions helps us by creating "free agents", which are
functions that are free to move anywhere, including specifically to the
object on or the namespace in which they belong.
Extracting pure functions helps us by freeing functions from system state,
so that we can more easily write clear, unambiguous tests for them. This is
horribly tedious work, but it's not hard. As we crank through the
permutations of inputs, we start to notice patterns that show us exactly
where to break things apart. For example, we see that these 7 inputs cause
the output to change, but that those 2 inputs are mostly irrelevant, except
for a few cases. Clearly, these inputs and those inputs belong on separate
classes/modules. Once we break them apart, our single batch of 500 tests
(300 of which look mostly the same) because two batches totaling about
120 tests (most of which capture important differences from the rest).
Extracting pure functions helps us by separating code from its context, so
that we can assemble smaller, more generic, more reusable modules that
we can begin to treat as pure components. From here, we can take
advantage of abstraction and modularity so that we can achieve the aims of
good design: locality of change, avoiding the ripple effect, adding features
by (mostly) adding variations instead of (mostly) changing existing code.
Extracting pure functions can involve a lot of mechanical, repetitive,
mind-numbing work. This makes it dangerous for the impatient
programmer who wants to get to the point. Remember: it took years to
create the mess, so you need to expect to spend the occasional hour filling
spreadsheets with 790 permutations of 14 different inputs and computing
the 790 corresponding sets of 6 different outputs.
Extracting pure functions takes implicit/hidden duplication in the code and
makes it impossible to ignore, thereby encouraging us to remove the
duplication, creating the barely-sufficient structure that the code
desperately needs.
Pure functions satisfy the substition model. When programs break the
substitution model, they are immensely more difficult to reason about. The
more pure functions in your design, the more of your system you can
clearly reason about and the more you isolate the "difficult parts" so that
they mostly stay out of the way of the rest of the system. This strongly
relates to the Dependency Inversion Principle.

Play the long game, ignore "ROI", focus on
controling cost, let good things happen

Normally, we Agilists focus on value over cost. Legacy code is one area
where we probably can't measure value at all, except to measure loss of
value from the high cost of making a mistake. For that reason, when
working with legacy code, I focus on controling cost. This explains why I
optimize for safety.
Often, in legacy code, we don't know where the value will come from, so we
stumble around in the dark until the situation becomes clearer. Over time,
we hope that we can better identify areas of high value. This explains why
we refactor so carefully and with small, reversible steps, so that when we
notice a more valuable direction, we feel comfortable dropping everything
to go that way.
Often, in legacy code, even if we know where the value lies, we have no idea
how much it costs to realize that value, so we can't measure what matters:
profit. (We can focus on value when we have a way to understand burn rate,
if not overall cost.) This explains why we control cost while we hunt value,
and then prepare ourselves to change directions as needed. Value can come
from unexpected places, so we plug away, protect against downside risk by
limiting investment, then let good things happen.

References
Ola Ellnestam and Daniel Brolund, The Mikado Method. One of the now-classic
texts on how to approach rescuing legacy code systematically and with high
discipline.

Michael Feathers, Working Effectively with Legacy Code. Still the classic text on the
topic.

J. B. Rainsberger, "Relative Include Paths and the Slow, Certain March Towards
Legacy Code". One specific design choice that leads towards legacy code, and
how to avoid it.

J. B. Rainsberger, "Brewing Espresso and Legacy Code". A real-life, non-
software example of the difficulties involved in wrestling with a legacy system.

Special Offer

http://link.jbrains.ca/2dQxTza
http://link.jbrains.ca/2eikqW4
http://link.jbrains.ca/2aSRW3D
http://link.jbrains.ca/1bn5ejv

Would you like to see how I approach legacy code in more detail? Sign up for
Surviving Legacy Code during the pre-release period and receive a significant
discount. I'm posting content through late 2016 and recording more in early
2017. Not only do you have the chance to take the course without paying full
price, but if you have code that you want me to refactor, I will do it! All this for
less than the normal price of the course.

(Dearest European friends: I apologize for this, but my distributor will add VAT
to the price of the course when you check out. I beg you not to be annoyed by
this.)

http://surviving-legacy-code.jbrains.ca/?product_id=113453&coupon_code=DEVLIN2016

	Surviving Legacy Code: Microtechniques
	Start with Undo, and Invest As Much As It Takes
	Reserve Capacity, Schedule the Work, Set a Timer, Start Anywhere
	Subclass to Test, then Replace Inheritance with Delegation
	Extract Pure Functions, and let the chips fall where they may
	Play the long game, ignore "ROI", focus on controling cost, let good things happen
	References
	Special Offer

